3.2302 \(\int \sqrt{1+x} (a+b x) \sqrt{1-x+x^2} \, dx\)

Optimal. Leaf size=326 \[ \frac{2\ 3^{3/4} \sqrt{2+\sqrt{3}} \sqrt{x^2-x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} (x+1)^{3/2} \left (7 a-5 \left (1-\sqrt{3}\right ) b\right ) \text{EllipticF}\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right ),-7-4 \sqrt{3}\right )}{35 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (x^3+1\right )}+\frac{2}{35} \sqrt{x^2-x+1} \sqrt{x+1} \left (7 a x+5 b x^2\right )+\frac{6 b \sqrt{x^2-x+1} \sqrt{x+1}}{7 \left (x+\sqrt{3}+1\right )}-\frac{3 \sqrt [4]{3} \sqrt{2-\sqrt{3}} b \sqrt{x^2-x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} (x+1)^{3/2} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{7 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (x^3+1\right )} \]

[Out]

(6*b*Sqrt[1 + x]*Sqrt[1 - x + x^2])/(7*(1 + Sqrt[3] + x)) + (2*Sqrt[1 + x]*Sqrt[1 - x + x^2]*(7*a*x + 5*b*x^2)
)/35 - (3*3^(1/4)*Sqrt[2 - Sqrt[3]]*b*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*
EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(7*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*(
1 + x^3)) + (2*3^(3/4)*Sqrt[2 + Sqrt[3]]*(7*a - 5*(1 - Sqrt[3])*b)*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x
 + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(35*Sqrt[
(1 + x)/(1 + Sqrt[3] + x)^2]*(1 + x^3))

________________________________________________________________________________________

Rubi [A]  time = 0.143442, antiderivative size = 326, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {809, 1853, 1878, 218, 1877} \[ \frac{2}{35} \sqrt{x^2-x+1} \sqrt{x+1} \left (7 a x+5 b x^2\right )+\frac{2\ 3^{3/4} \sqrt{2+\sqrt{3}} \sqrt{x^2-x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} (x+1)^{3/2} \left (7 a-5 \left (1-\sqrt{3}\right ) b\right ) F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{35 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (x^3+1\right )}+\frac{6 b \sqrt{x^2-x+1} \sqrt{x+1}}{7 \left (x+\sqrt{3}+1\right )}-\frac{3 \sqrt [4]{3} \sqrt{2-\sqrt{3}} b \sqrt{x^2-x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} (x+1)^{3/2} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{7 \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (x^3+1\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 + x]*(a + b*x)*Sqrt[1 - x + x^2],x]

[Out]

(6*b*Sqrt[1 + x]*Sqrt[1 - x + x^2])/(7*(1 + Sqrt[3] + x)) + (2*Sqrt[1 + x]*Sqrt[1 - x + x^2]*(7*a*x + 5*b*x^2)
)/35 - (3*3^(1/4)*Sqrt[2 - Sqrt[3]]*b*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*
EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(7*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*(
1 + x^3)) + (2*3^(3/4)*Sqrt[2 + Sqrt[3]]*(7*a - 5*(1 - Sqrt[3])*b)*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x
 + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(35*Sqrt[
(1 + x)/(1 + Sqrt[3] + x)^2]*(1 + x^3))

Rule 809

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[
((d + e*x)^FracPart[p]*(a + b*x + c*x^2)^FracPart[p])/(a*d + c*e*x^3)^FracPart[p], Int[(f + g*x)*(a*d + c*e*x^
3)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[m, p] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0]

Rule 1853

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], i}, Simp[(a + b*x^n)^p*Sum[(C
oeff[Pq, x, i]*x^(i + 1))/(n*p + i + 1), {i, 0, q}], x] + Dist[a*n*p, Int[(a + b*x^n)^(p - 1)*Sum[(Coeff[Pq, x
, i]*x^i)/(n*p + i + 1), {i, 0, q}], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[(n - 1)/2, 0] && GtQ[
p, 0]

Rule 1878

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a,
 3]]}, Dist[(c*r - (1 - Sqrt[3])*d*s)/r, Int[1/Sqrt[a + b*x^3], x], x] + Dist[d/r, Int[((1 - Sqrt[3])*s + r*x)
/Sqrt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int \sqrt{1+x} (a+b x) \sqrt{1-x+x^2} \, dx &=\frac{\left (\sqrt{1+x} \sqrt{1-x+x^2}\right ) \int (a+b x) \sqrt{1+x^3} \, dx}{\sqrt{1+x^3}}\\ &=\frac{2}{35} \sqrt{1+x} \sqrt{1-x+x^2} \left (7 a x+5 b x^2\right )+\frac{\left (3 \sqrt{1+x} \sqrt{1-x+x^2}\right ) \int \frac{\frac{2 a}{5}+\frac{2 b x}{7}}{\sqrt{1+x^3}} \, dx}{2 \sqrt{1+x^3}}\\ &=\frac{2}{35} \sqrt{1+x} \sqrt{1-x+x^2} \left (7 a x+5 b x^2\right )+\frac{\left (3 b \sqrt{1+x} \sqrt{1-x+x^2}\right ) \int \frac{1-\sqrt{3}+x}{\sqrt{1+x^3}} \, dx}{7 \sqrt{1+x^3}}+\frac{\left (3 \left (7 a-5 \left (1-\sqrt{3}\right ) b\right ) \sqrt{1+x} \sqrt{1-x+x^2}\right ) \int \frac{1}{\sqrt{1+x^3}} \, dx}{35 \sqrt{1+x^3}}\\ &=\frac{6 b \sqrt{1+x} \sqrt{1-x+x^2}}{7 \left (1+\sqrt{3}+x\right )}+\frac{2}{35} \sqrt{1+x} \sqrt{1-x+x^2} \left (7 a x+5 b x^2\right )-\frac{3 \sqrt [4]{3} \sqrt{2-\sqrt{3}} b (1+x)^{3/2} \sqrt{1-x+x^2} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{7 \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \left (1+x^3\right )}+\frac{2\ 3^{3/4} \sqrt{2+\sqrt{3}} \left (7 a-5 \left (1-\sqrt{3}\right ) b\right ) (1+x)^{3/2} \sqrt{1-x+x^2} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{35 \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \left (1+x^3\right )}\\ \end{align*}

Mathematica [C]  time = 1.71769, size = 423, normalized size = 1.3 \[ \frac{2}{35} x \sqrt{x+1} \sqrt{x^2-x+1} (7 a+5 b x)-\frac{(x+1)^{3/2} \left (\frac{\sqrt{2} \sqrt{\frac{-\frac{6 i}{x+1}+\sqrt{3}+3 i}{\sqrt{3}+3 i}} \sqrt{\frac{\frac{6 i}{x+1}+\sqrt{3}-3 i}{\sqrt{3}-3 i}} \left (5 \left (3-i \sqrt{3}\right ) b-14 i \sqrt{3} a\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{\sqrt{3}+3 i}}}{\sqrt{x+1}}\right ),\frac{\sqrt{3}+3 i}{-\sqrt{3}+3 i}\right )}{\sqrt{x+1}}-\frac{60 \sqrt{-\frac{i}{\sqrt{3}+3 i}} b \left (x^2-x+1\right )}{(x+1)^2}+\frac{15 i \sqrt{2} \left (\sqrt{3}+i\right ) b \sqrt{\frac{-\frac{6 i}{x+1}+\sqrt{3}+3 i}{\sqrt{3}+3 i}} \sqrt{\frac{\frac{6 i}{x+1}+\sqrt{3}-3 i}{\sqrt{3}-3 i}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{3 i+\sqrt{3}}}}{\sqrt{x+1}}\right )|\frac{3 i+\sqrt{3}}{3 i-\sqrt{3}}\right )}{\sqrt{x+1}}\right )}{70 \sqrt{-\frac{i}{\sqrt{3}+3 i}} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 + x]*(a + b*x)*Sqrt[1 - x + x^2],x]

[Out]

(2*x*Sqrt[1 + x]*(7*a + 5*b*x)*Sqrt[1 - x + x^2])/35 - ((1 + x)^(3/2)*((-60*Sqrt[(-I)/(3*I + Sqrt[3])]*b*(1 -
x + x^2))/(1 + x)^2 + ((15*I)*Sqrt[2]*(I + Sqrt[3])*b*Sqrt[(3*I + Sqrt[3] - (6*I)/(1 + x))/(3*I + Sqrt[3])]*Sq
rt[(-3*I + Sqrt[3] + (6*I)/(1 + x))/(-3*I + Sqrt[3])]*EllipticE[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1
+ x]], (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x] + (Sqrt[2]*((-14*I)*Sqrt[3]*a + 5*(3 - I*Sqrt[3])*b)*Sqrt
[(3*I + Sqrt[3] - (6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3*I + Sqrt[3] + (6*I)/(1 + x))/(-3*I + Sqrt[3])]*Elli
pticF[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x]))/(70
*Sqrt[(-I)/(3*I + Sqrt[3])]*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Maple [B]  time = 0.014, size = 596, normalized size = 1.8 \begin{align*} -{\frac{1}{35\,{x}^{3}+35}\sqrt{1+x}\sqrt{{x}^{2}-x+1} \left ( 21\,i\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) \sqrt{3}a-15\,i\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) \sqrt{3}b-10\,b{x}^{5}+90\,\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticE} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) b-63\,\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) a-45\,\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) b-14\,a{x}^{4}-10\,b{x}^{2}-14\,ax \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(1/2)*(b*x+a)*(x^2-x+1)^(1/2),x)

[Out]

-1/35*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(21*I*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2
)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/
2)+3))^(1/2))*3^(1/2)*a-15*I*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/
2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2
))*3^(1/2)*b-10*b*x^5+90*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2
*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticE((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*b
-63*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))
^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*a-45*(-2*(1+x)/(-3+I*3
^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*
(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*b-14*a*x^4-10*b*x^2-14*a*x)/(x^3+1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b x + a\right )} \sqrt{x^{2} - x + 1} \sqrt{x + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)*(b*x+a)*(x^2-x+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*x + a)*sqrt(x^2 - x + 1)*sqrt(x + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b x + a\right )} \sqrt{x^{2} - x + 1} \sqrt{x + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)*(b*x+a)*(x^2-x+1)^(1/2),x, algorithm="fricas")

[Out]

integral((b*x + a)*sqrt(x^2 - x + 1)*sqrt(x + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b x\right ) \sqrt{x + 1} \sqrt{x^{2} - x + 1}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(1/2)*(b*x+a)*(x**2-x+1)**(1/2),x)

[Out]

Integral((a + b*x)*sqrt(x + 1)*sqrt(x**2 - x + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b x + a\right )} \sqrt{x^{2} - x + 1} \sqrt{x + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)*(b*x+a)*(x^2-x+1)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x + a)*sqrt(x^2 - x + 1)*sqrt(x + 1), x)